

TB-04631-001_v05 | October 2013

Technical Brief

10 AND 12-BIT GRAYSCALE
TECHNOLOGY

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | ii

DOCUMENT CHANGE HISTORY

TB-04631-001_v05

 Version Date Authors Description of Change
01 April 17, 2009 SV, SM Initial Release

02 February 9, 2010 SV, SM Addition of Table 2

03 February 7, 2011 SV, SM • Updated “System Specification” section
• Updated “Supported Connectors” section
• Updated Table 3 and Table 4
• Removed “Moving and Spanning Windows
Across Displays” section
• Removed “Targeting Specific GPUs for
Rendering” section
• Added “Directed GPU Rendering” section
• Updated “Implementation Details” section

04 April 5, 2013 AS, SV, SM • Updated to include current NVIDIA® Kepler™
products
• Updated to include support for OpenGL 10-
bit per component pixel formats

05 October 8, 2013 SV, SM Updated Table 2 with Quadro K600 and
Quadro K6000

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | iii

TABLE OF CONTENTS

Introduction ... 1
System Specification ... 3
Supported Graphics Boards .. 4
Supported Monitors ... 5
Typical Multi-Display Configuration .. 6

Case 1. Two 5 MP Grayscale Displays Driven by One Quadro Card 6
Case 2. Four 5 MP Grayscale Displays Driven by Two Quadro Cards 8

Supported Connectors .. 9
Single or Dual-Link DVI .. 9
DisplayPort and Adapters ... 9

Grayscale Monitor Settings ... 12
Grayscale Application Development ... 13

DVI Driver Layer .. 13
Older Method for DVI Application Level Pixel Packing 14
OpenGL 10-Bit Pixel Format for DVI and DisplayPort on Windows 7 17

Creating a 10 bpc OpenGL Window ... 17
Multi-Display Configurations with Kepler ... 19

Multiple Display Setup ... 19
Mixing Grayscale and Color Displays .. 22

Appendix .. 24
Multi-GPU Compatibility for Pre-Kepler Cards ... 24
Directed GPU Rendering .. 25
References .. 27
Implementation Details ... 27

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | iv

LIST OF FIGURES

Figure 1. 10 MPixel 10-Bit Diagnostic Mammography Display 2
Figure 2. Application Enhanced Using Multiply Displays 3
Figure 3. 10 MP Grayscale Configuration ... 6
Figure 4. Three GPUs Driving a 20 MP Grayscale Display 8
Figure 5. DisplayPort to Single-Link DVI Adapter (Passive) 10
Figure 6. Latched Mini-DisplayPort ... 10
Figure 7. Latched Mini-DisplayPort to Single-Link DVI 11
Figure 8. DisplayPort to Dual-Link DVI Adapter (Active) 11
Figure 9. Enable 5 MP Grayscale Monitor to Display Higher Resolution 12
Figure 10. Driver Converts and Packs Desktop from 24-Bit Color to 12-Bit Gray 14
Figure 11. Application Level Texture Setup for 10 and 12-Bit Grayscale Display 16
Figure 12. Display Properties Before and After Displays are Enabled 20
Figure 13. Setting Render GPU from NVIDIA Control Panel................................. 26

LIST OF TABLES

Table 1. Grayscale Implementation Method Based On Display Connector and OS 3
Table 2. Quadro Graphics Boards with 10 and 12-Bit Grayscale Support 4
Table 3. Grayscale Capable Display Panels with Supported Resolution and Pixel

Depth ... 5
Table 4. Single Card Option for Dual Display Configurations 7
Table 5. 20 MP Configuration .. 9
Table 6. Multi-GPU Compatibility .. 25

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | 1

INTRODUCTION

Advances in sensor technology and image acquisition techniques in the field of
radiology are producing high bit depth grayscale images in the range of 12 to 16-bit per
pixel. At the same time, the adoption of displays with native support for 10 and 12-bit
grayscale is growing. These affordable displays are DICOM[1] conformant to preserve
image quality and consistency. Furthermore, expanded display capabilities of the latest
NVIDIA Quadro® cards enable tiling together multiple high resolution displays for side-
by-side comparisons from a single card.

Standard graphics workstations however are limited to 8-bit grayscale, which provides
only 256 possible shades of gray for each pixel sometimes obscuring subtle contrasts in
high density images. Radiologists often use window-leveling techniques to identify the
region of interest that can quickly become a cumbersome and time-consuming user
interaction process.

NVIDIA’s 10–bit and 12-bit grayscale technology allows these high quality displays to
be driven by standard NVIDIA® Quadro® graphics boards preserving the full grayscale
range. This is done in 2 modes.

 “Pixel Packing” where the 10-bit or 12-bit grayscale data is transmitted from the
Quadro graphics board to a high grayscale density display using a standard DVI
cable. Instead of the standard three 8-bit color components per pixel, the pixel
packing allows two 10 or 12-bit pixels to be transmitted, providing higher spatial
resolution and grayscale pixel depth as compared to an 8-bit system. In recent driers,
this pixel packing is done by driver transparent to the application when 10-bit per
component pixel formats are used. This greatly simplifies programming in addition
to making the application portable across multiple vendor hardware.

 Using 10-bit pixel formats over a VESA® DisplayPort™ output connection. No pixel
packing is required as DisplayPort has sufficient bandwidth to transfer 5 MPixels
with full 10-bit RGB color channels.

Introduction

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | 2

As specialty hardware is not required, NVIDIA’s 10-bit grayscale technology is readily
available for use with other radiology functions and easy to support amongst a wide
range of grayscale panels from various manufacturers. In a preliminary study
performed on 10 radiologists using Dome E5 10-bit vs. E5 8-bit displays in conjunction
with Three Palms 10-bit, OpenGL accelerated Workstation One mammography
application, radiologists’ performance was statistically significant on the 10-bit enabled
display systems, some experiencing triple the read time speedup.

This technical brief describes the NVIDIA grayscale technology, the system
requirements and setup. It also aims to guide users through common pitfalls that arise
when extending to multi-display and multi graphics processing unit (GPU)
environments routinely used in diagnostic imaging and recommends best practices.

Figure 1 shows the latest technology in digital diagnostic display systems, a Quadro
card driving a 10 mega-pixel, 10-bit grayscale display. Figure 2 shows a 10-bit enabled
mammography application displaying multiple modalities on multiple displays.

Figure 1. 10 MPixel 10-Bit Diagnostic Mammography Display1

1 Image courtesy of NDS Surgical Imaging, DOME Z10

Introduction

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | 3

Figure 2. Application Enhanced Using Multiply Displays2

SYSTEM SPECIFICATION

 10 and 12-bit grayscale is currently supported on
● Windows XP 32-bit and 64-bit
● Windows 7 and Windows 8 (Aero should be enabled for best performance)

 Grayscale with 10-bit pixel formats is only supported for OpenGL based applications
Table 1 summarizes the guidelines for specific implementation methods based on the
display connector and operating system.

Table 1. Grayscale Implementation Method Based On Display
Connector and OS

Operating System DVI DisplayPort
Windows 7 OpenGL 10 bpc pixel format OpenGL 10 bpc pixel format

Windows XP Application pixel packaging OpenGL 10 bpc pixel format

2 Image courtesy of Threepalms, Inc.

Introduction

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | 4

SUPPORTED GRAPHICS BOARDS

The boards shown in Table 2 support 10-bit grayscale and are NVIDIA® CUDA®
enabled.

Table 2. Quadro Graphics Boards with 10 and 12-Bit Grayscale Support

Mid range – Quadro K2000D, Quadro K2000, Quadro K600, Quadro
2000D, Quadro 600, Quadro 2000

Recommended for 2D image display
and manipulation use cases over
multiple displays. No auxiliary
power is required.

High end – Quadro K4000, Quadro 4000

Recommended if the primary usage
is to display and compute with 2D
grayscale and 3D data.

Ultra high end – Quadro K6000, Quadro K5000, Quadro 6000,
Quadro 5000

Recommended for applications that
also require rendering and
processing large 3D and 4D
geometries and volumes.

Quadro Plex 7000,

Quadro Plex 2200 D2

Dedicated desk side visual
computing system composed of 2
highest-end Quadro graphics boards
with up to 12 GB of total graphics
memory. Recommended for
advanced visualization and large
scale projection and display use
cases.

Introduction

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | 5

SUPPORTED MONITORS

Table 3. Grayscale Capable Display Panels with Supported Resolution
and Pixel Depth

Manufacturer Panel Supported Resolutions
Grayscale
Depth

Packed
Pixel DVI

10-Bit
DisplayPort

NDS Surgical
Imaging

Dome E2
• 1600 × 1200 at 60 Hz
• 1200 × 1600 at 60 Hz

10 and 12-bit
Yes No

Dome E3
• 2048 × 1536 at 60 Hz
• 1536 × 2048 at 60 Hz

10 and 12-bit
Yes No

Dome S3,
Dome S3c

• 2048 × 1536 at 60 Hz
• 1536 × 2048 at 60 Hz

10 and 12-bit
Yes No

Dome E5
• 2560 × 2048 at 50 Hz
• 2048 × 2560 at 50 Hz

10 and 12-bit
Yes No

Dome Z10
• 4096 × 2560 at 50 Hz
• 2560 × 4096 at 50 Hz

10 and 12-bit
Yes Yes

Eizo

GS 520
• 2560 × 2048 at 50 Hz
• 2048 × 2560 at 50 Hz

10-bit
Yes Yes

GS 521
• 2560 × 2048 at 50 Hz
• 2048 × 2560 at 50 Hz

10-bit
Yes No

GX 530
• 2560 × 2048 at 50 Hz
• 2048 × 2560 at 50 Hz

10-bit
No Yes

GX 1030
• 2560 × 4096 at 50 Hz
• 4096 × 2560 at 50 Hz

10-bit
Yes No

NEC

MD215MG
• 2560 × 2048 at 57 Hz
• 2048 × 2560 at 57 Hz

10-bit
Yes No

MD205MG,
MD205MG-1

• 2560 × 2048 at 57 Hz
• 2048 × 2560 at 57 Hz

10-bit
Yes No

MD211G3
• 2560 × 2048 at 57 Hz
• 2048 × 2560 at 57 Hz

10-bit
Yes No

MD213MG
• 2048 × 1536 at 60 Hz
• 1536 × 2048 at 60 Hz

10-bit
Yes No

MD21GS-
3MP

• 2048 × 1536 at 60 Hz
• 1536 × 2048 at 60 Hz

10-bit
Yes No

MD21GS-
2MP

• 1600 × 1200 at 60 Hz
• 1200 × 1600 at 60 Hz

10-bit
Yes No

Wide IF2105PM
• 2560 × 2048 at 50 Hz
• 2048 × 2560 at 50 Hz

10-bit
Yes No

Beacon
G32SP

• 2048 × 1536 at 60 Hz
• 1536 × 2048 at 60 Hz

10-bit
Yes No

G51SP
• 2560 × 2048 at 57 Hz
• 2048 × 2560 at 57 Hz

10-bit
Yes No

Introduction

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | 6

TYPICAL MULTI-DISPLAY CONFIGURATION

We examine the commonly used multi-display setups that mix grayscale monitors and
color panels and their underlying GPU configuration.

Case 1. Two 5 MP Grayscale Displays Driven by One
Quadro Card
The most commonly used configuration for diagnostic imaging, a single Quadro K4000,
Quadro K2000, or Quadro K2000D drives two 5 MP grayscale displays plus a side
“worklist” display.

Figure 3. 10 MP Grayscale Configuration

Introduction

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | 7

Table 4 shows the two single card configuration options for a 10 MP setup. The customer
can choose between the options for either the Quadro K2000 and Quadro K4000 or the
Quadro K2000D.

Table 4. Single Card Option for Dual Display Configurations

Quadro K2000 or Quadro K4000
(If Diagnostic Display Supports

DisplayPort)

Quadro K2000D
(If Diagnostic Display Only Supports DVI)

Displays DVI
connector

DisplayPort
connector

DisplayPort
connector

DVI or
DisplayPort
(through mini-
DisplayPort
adapter)

Dual-link
DVI
connector

Dual-link
DVI
connector

Side Display

2-5 MP Diagnostic
Display

2-5 MP Diagnostic
Display

Introduction

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | 8

Case 2. Four 5 MP Grayscale Displays Driven by Two
Quadro Cards
In this configuration, a single Quadro K4000, Quadro K2000, or Quadro K2000D can
drive two 5 MP grayscale displays plus a side "worklist" display. A second Quadro
K4000, Quadro K2000, or Quadro K2000D card can drive the remaining two 5 MP
displays.

Figure 4. Three GPUs Driving a 20 MP Grayscale Display

Introduction

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | 9

Table 5 shows the two graphics cards required configuration for a 20 MP setup. The
configuration requires two Quadro K2000, Quadro K2000D, or Quadro K4000 cards.

Table 5. 20 MP Configuration

Quadro K2000, Quadro K2000D, or

Quadro K4000
Quadro K2000, Quadro K2000D, or

Quadro K4000

Displays DVI
connector

DisplayPort
or DVI
connector

DisplayPort
or DVI
connector

DVI connector DisplayPort
or DVI
connector

DisplayPort
or DVI
connector

Side Display

2-5 MP Diagnostic
Display

2-5 MP Diagnostic
Display

2-5 MP Diagnostic
Display

2-5 MP Diagnostic
Display

SUPPORTED CONNECTORS

Single or Dual-Link DVI
Although single-link DVI is only capable of transmitting up to HD (1920 × 1200), our
grayscale pixel packing mechanism allows 5 MP (2560 × 2048) images to be sent over
single-link DVI.

DisplayPort and Adapters
 As displays are increasingly adopting DisplayPort, the native DisplayPort

connectors on Quadro cards can be connected directly via DisplayPort cables.
 For standard size DisplayPort connectors to single-link DVI conversion, passive

adapters such as Hosiden (P/N TYX1602-010307) and Simula (P/N DJ8028B-1000-
10E) are tested and recommended.

 On the Quadro K2000D for latched mini-DisplayPort to standard size DisplayPort
conversion, use Bizlink P/N KS30011-B07 or Simula P/N CB802E-4000-10H.

 On the Quadro K2000D for latched mini-DisplayPort to single-link DVI conversion,
use Bizlink PN KS30037-C07.

Introduction

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | 10

 To support dual-link resolutions from a DisplayPort connector, an active adapter is
required. As shown in Figure 8 this dongle includes a built in USB cable connecting
to the USB port providing power to the adapter. NVIDIA recommends the Bizlink
DisplayPort-to-DVI-D dual-link cable adapter (P/N KS10014-207).

 The Simula and Bizlink adapters can be purchased from NVIDIA’s online store at
http://store.nvidia.com/ (under the cables category).

Figure 5. DisplayPort to Single-Link DVI Adapter (Passive)

Figure 6. Latched Mini-DisplayPort

http://store.nvidia.com/

Introduction

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | 11

Figure 7. Latched Mini-DisplayPort to Single-Link DVI

Figure 8. DisplayPort to Dual-Link DVI Adapter (Active)

Introduction

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | 12

GRAYSCALE MONITOR SETTINGS

When a grayscale compatible monitor is connected to a suitable NVIDIA Quadro
solution, the NVIDIA driver automatically detects it and immediately switches to
packed pixel mode. Therefore, there are no control panel settings to enable and disable
10-bit grayscale. On Windows XP, the only setting required is to enable the grayscale
monitor to display at its optimal resolution as shown in the following steps for a 5 MP
panel with resolution 2560 × 2048.

 Note: These steps are not required on Windows 7 and Windows 8.

1. Open the Display Properties.

2. Select the Settings tab.

3. Click on Advanced.

4. Select the Monitor tab.

5. Uncheck the Hide modes that this monitor cannot display check box.

6. Click Apply. The maximum resolution is now set to 2560 × 2048.

Figure 9. Enable 5 MP Grayscale Monitor to Display Higher Resolution

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | 13

GRAYSCALE APPLICATION DEVELOPMENT

DVI DRIVER LAYER

On grayscale enabled Quadro solution, the driver implements a pixel packing
mechanism that is transparent to the desktop and to the application. The 24-bit RGB
desktop is first converted to 12-bit grayscale using the NTSC color conversion formula
and then two 12-bit gray values are packed into 1 RGB DVI pixel and finally shipped to
the monitor. This pixel packing allows displaying of 5 MP gray values just using a
single-link DVI (that is normally limited to HD resolution).

Grayscale Application Development

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | 14

Figure 10. Driver Converts and Packs Desktop from 24-Bit Color to 12-
Bit Gray

OLDER METHOD FOR DVI APPLICATION LEVEL PIXEL
PACKING
This is a legacy method mostly used for applications on Windows XP using DVI
displays, but will work with Windows 7 and Windows 8 if the same code base is to be
shared.

The 10 and 12-bit grayscale image viewing application is responsible for outputing 24-
bit RGB pixels which the driver then converts to 12-bit grayscale values for scanout as
described in the previous section.

The application uses a shader that takes in the 12-bit grayscale value from the image and
translates it into a 24-bit RGB pixel using a lookup table. The lookup table is generated
to find the best RGB pixel with as little as possible differences between the RGB values
(preferred is R=G=B) for each grayscale value in the input image. In essence, this process

Grayscale Application Development

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | 15

is the inverse of the driver conversion from RGB to grayscale. The end result is that the
grayscale image on the desktop looks like a grayscale image on a color monitor.

The integer texture extension, EXT_texture_integer [4] in Shader Model 4 is used to
store the incoming grayscale image as a 16-bit unsigned integer without converting to
floating point representation saving memory footprint by 2×.
glPixelStorei(GL_UNPACK_ALIGNMENT, 2);
glTexImage2D(GL_TEXTURE_2D, 0, GL_ALPHA16UI_EXT, width, height, 0, GL_ALPHA_INTEGER_EXT ,
GL_UNSIGNED_SHORT, TextureStorage);

The lookup table mapping the grayscale image to 24-bit RGB values is stored as 1D
texture. The lookup table dimensions should exactly match the bit depth of the grayscale
values expected in incoming image so that no filtering and interpolation operations will
be performed thus preserving image precision and fidelity. Changes to contrast,
brightness and window level of the image are easily done by changing the lookup table
resulting in a 1D texture download without any change to the source image.
#extension GL_EXT_gpu_shader4 : enable // for unsigned int support uniform usampler2D
texUnit0; // Gray Image is in tex unit 0
uniform sampler1D texUnit1; // Lookup Table Texture in tex unit 1
void main(void)
{

 vec2 TexCoord = vec2(gl_TexCoord[0]);
 //texture fetch of unsigned ints placed in alpha channel
 uvec4 GrayIndex = uvec4(texture2D(texUnit0, TexCoord));
 //low 12 bits taken only
 float GrayFloat = float(float(GrayIndex.a) / 4096.0);
 //fetch right grayscale value out of table
 vec4 Gray = vec4(texture1D(texUnit1, GrayFloat));
 // write data to the framebuffer
 gl_FragColor = Gray.rgba;

}

Grayscale Application Development

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | 16

Figure 11. Application Level Texture Setup for 10 and 12-Bit Grayscale
Display

Grayscale Application Development

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | 17

OPENGL 10-BIT PIXEL FORMAT FOR DVI AND
DISPLAYPORT ON WINDOWS 7
A significant drawback of the pixel packing mechanism explained in the previous
section is that it requires more programming work by the application developer and is
vendor dependent. With the latest drivers, the implementation is significantly made
easier with the use of OpenGL native 10-bit pixel format. This is the recommended path
for the following:

 Windows 7 based applications – supported for monitors requiring DVI pixel packing
and ones that support grayscale over DisplayPort.

 Windows XP – only enabled on panels with DisplayPort support.

In this case, the application doesn’t need to manage the lookup into the grayscale table
in the shader as this is done seamlessly under the hood by the driver (for DVI). The
application is responsible for creating the input texture using the integer texture
extension as explained in the previous section and the driver does the necessary
conversions to make the data visible on screen.

Creating a 10 bpc OpenGL Window
On Windows, the displayable 30-bit pixel formats are exported via
WGL_ARB_pixelformat extension [5]. To access these pixel formats, the WGL pixel
format functions are used instead of their GDI equivalents. A dummy OpenGL window
must be created in order to get a handle to these WGL functions.
// Create a dummy window to query the WGL_ARB_pixelformats
HWND dummyWin = CreateDummyGLWindow(szClassName, "Dummy", FALSE);
if (dummyWin == NULL) {
 // TODO - Error Handling here
}
HDC dummyDC = GetDC(dummyWin);
// TODO – Set Pixel Format
HGLRC dummyRC = (HGLRC) wglCreateContext (dummyDC);
// Set the OpenGL context current
wglMakeCurrent(dummyDC, dummyRC);

// Find the 30-bit color ARB pixelformat
wglGetExtensionsString = (PFNWGLGETEXTENSIONSSTRINGARBPROC)
 wglGetProcAddress("wglGetExtensionsStringARB");
if (wglGetExtensionsString == NULL) {
 // TODO - Error Handling and Cleanup here
}
const char *szWglExtensions = wglGetExtensionsString(dummyDC);
if (strstr(szWglExtensions, " WGL_ARB_pixel_format ") == NULL) {
 // TODO - Error Handling and Cleanup here
}
wglGetPixelFormatAttribiv = (PFNWGLGETPIXELFORMATATTRIBIVARBPROC)
 wglGetProcAddress("wglGetPixelFormatAttribivARB");
wglGetPixelFormatAttribfv = (PFNWGLGETPIXELFORMATATTRIBFVARBPROC)
 wglGetProcAddress("wglGetPixelFormatAttribfvARB");

Grayscale Application Development

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | 18

wglChoosePixelFormat = (PFNWGLCHOOSEPIXELFORMATARBPROC)
 wglGetProcAddress("wglChoosePixelFormatARB");
if ((wglGetPixelFormatAttribfv == NULL) || (wglGetPixelFormatAttribiv == NULL) ||
(wglChoosePixelFormat == NULL))
 // TODO - Error Handling and Cleanup here

The 10 bits per component is specified in the desired attribute list before calling the
wglChoosePixelFormat which returns the matching pixel formats. The following code
listing also checks the RGB color depth after the call to make sure that a 30-bit color pixel
format is in place.
int attribsDesired[] = {
 WGL_DRAW_TO_WINDOW_ARB, 1,
 WGL_ACCELERATION_ARB, WGL_FULL_ACCELERATION_ARB,
 WGL_RED_BITS_ARB, 10,
 WGL_GREEN_BITS_ARB, 10,
 WGL_BLUE_BITS_ARB, 10,
 WGL_ALPHA_BITS_ARB, 2,
 WGL_DOUBLE_BUFFER_ARB, 1,
 0,0
};

UINT nMatchingFormats;
int index = 0;
if (!wglChoosePixelFormat(dummyDC, attribsDesired, NULL, 1, &index, &nMatchingFormats)) {
 printf("ERROR: wglChoosePixelFormat failed!\n");
 goto cleanup;
}

if (nMatchingFormats == 0) {
 printf("ERROR: No 10bpc WGL_ARB_pixel_formats found!\n");
 goto cleanup;
}

// Double-check that the format is really 10bpc
int redBits;
int alphaBits;
int uWglPfmtAttributeName = WGL_RED_BITS_ARB;
wglGetPixelFormatAttribiv(dummyDC, index, 0, 1, &uWglPfmtAttributeName, &redBits);
uWglPfmtAttributeName = WGL_ALPHA_BITS_ARB;
wglGetPixelFormatAttribiv(dummyDC, index, 0, 1, &uWglPfmtAttributeName, &alphaBits);

printf("pixelformat chosen, index %d red bits: %d alpha bits: %d", index, redBits,
alphaBits);

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | 19

MULTI-DISPLAY CONFIGURATIONS WITH
KEPLER

Diagnostic imaging commonly requires multiple displays for side by side modality
comparisons. Multi-display configurations are becoming easier to manage with new
Quadro boards like the Quadro K5000, Quadro K4000, and Quadro K2000 - which can
drive up to 4 simultaneous displays. Depending on the available PCI slots within a
system, multiple cards can be used to drive more than 4 displays. These multiple
displays can be a mix of regular color LCD panels and specialty grayscale monitors. This
section explains the issues that arise from such a heterogeneous configuration and
programming pointers to address them. The full source code for the examples is found
in the accompanying Grayscale10-bit SDK.

MULTIPLE DISPLAY SETUP

For Windows XP, the multi-display capability has to be enabled explicitly as follows. To
enable multi-display from the desktop follow these simple steps.

1. Open the Display Properties.

2. Select the Settings tab.

3. Check the Extend my Windows desktop onto this monitor checkbox for each display as
shown in Figure 8.

Multi-Display Configurations with Kepler

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | 20

Figure 12. Display Properties Before and After Displays are Enabled

For an application using multiple GPU’s and displays it is often useful to
programmatically find out their attributes and capabilities. This section and the
following ones show code samples to demonstrate that in progressive detail. Following
are some data structures used throughout the document examples. The CDisplayWin
structure defined in CDisplayWin.[h|cpp]encapsulates the attributes of each display
and the displayWinList is a container for all displays. Accessing functions have been
omitted to aid readability.
class CDisplayWin {
 HWND hWin; // handle to display window
 HDC winDC; // DC of display window
 RECT rect; // rectangle limits of display
 bool primary; //Is this the primary display
 char displayName[128]; //name of this display
 char gpuName[128]; //name of associated GPU
 bool grayScale; //Is this a grayscale display
public:
 bool spans(RECT r);//If incoming rect r spans this display

}
#define MAX_NUM_GPUS 4
int displayCount = 0; //number of active displays

Multi-Display Configurations with Kepler

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | 21

//list of displays, each gpu can attach to max 2 displays
CDisplayWin displayWinList[MAX_NUM_GPUS*2];

Following is a simple example using the Windows GDI to enumerate the attached
displays, gets their extents and also check if the display is set as primary. The following
code can be easily modified to include unattached displays.
DISPLAY_DEVICE dispDevice;
DWORD displayCount = 0;
memset((void *)&dispDevice, 0, sizeof(DISPLAY_DEVICE));
dispDevice.cb = sizeof(DISPLAY_DEVICE);
// loop through the displays and print out state
while (EnumDisplayDevices(NULL,displayCount,&dispDevice,0)) {
if (dispDevice.StateFlags & DISPLAY_DEVICE_ATTACHED_TO_DESKTOP) {
 printf("DeviceName = %s\n", dispDevice.DeviceName);
 printf("DeviceString = %s\n",dispDevice.DeviceString);
 if (dispDevice.StateFlags &DISPLAY_DEVICE_PRIMARY_DEVICE)
 printf("\tPRIMARY DISPLAY\n");
 DEVMODE devMode;
 memset((void *)&devMode, 0, sizeof(devMode));
 devMode.dmSize = sizeof(devMode);
 EnumDisplaySettings(dispDevice.DeviceName, ENUM_CURRENT_SETTINGS,
 &devMode);
 printf("\tPosition/Size = (%d, %d), %dx%d\n", devMode.dmPosition.x,
 devMode.dmPosition.y,devMode.dmPelsWidth, devMode.dmPelsHeight);
 HWND hWin = createWindow(GetModuleHandle(NULL),devMode.dmPosition.x+50,
 devMode.dmPosition.y+50, devMode.dmPelsWidth-50, devMode.dmPelsHeight-
50);
 if (hWin) { //got a window
 HDC winDC = GetDC(hWin);
 // TODO - set pixel format, create OpenGL context
 }
 else
 printf("Error creating window \n");
 }//if attached to desktop
 displayCount++;
} //while(enumdisplay);

Running this enumeration code on our 3 display example (shown in Figure 12), prints
out the following:
DeviceName = \\.\DISPLAY1
DeviceString = NVIDIA Quadro K2000
PRIMARY DISPLAY
Position/Size = (0, 0), 1280x1024

DeviceName = \\.\DISPLAY2
DeviceString = NVIDIA Quadro K2000
Position/Size = (1280, 0), 2560x2048

DeviceName = \\.\DISPLAY3
DeviceString = NVIDIA Quadro K2000
Position/Size = (3840, 0), 1600x1200

 Note: The enumeration shown in this section abstracts special hardware
capabilities of the displays such as grayscale or color capability. For such physical
display details, we need to access to the Extended display identification data
(EDID) the data structure provided by the computer display to the graphics card.
This is described in the next section.

Multi-Display Configurations with Kepler

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | 22

MIXING GRAYSCALE AND COLOR DISPLAYS

The previous section demonstrated how to get the general characteristics of a display
such as extent etc, but more specific properties of monitors will decide how to layout our
application. For example, user interface and launching elements are normally placed on
the regular color LCDs while the radiological images will be rendered to the grayscale
displays. A display is defined to be grayscale compatible if both the monitor and the
GPU attached are grayscale enabled. To determine if a monitor is grayscale we parse its
EDID to get the model name and compare it with the list of enabled monitors. This
EDID is provided by the NVIDIA NVAPI [5] – an SDK that gives low level direct access
to NVIDIA GPUs and drivers on all windows platforms. The following example shows
enumerating the attached displays and its associated panel and GPU string. Refer to the
complete source in CheckGrayscale.cpp for error checking functions and the
isGrayscaleGPU and isGrayscaleMonitor string parsing functions.
// Declare array of displays and associated grayscale flag
NvDisplayHandle hDisplay[NVAPI_MAX_DISPLAYS] = {0};
NvU32 displayCount = 0;
// Enumerate all the display handles
for(int i=0,nvapiStatus=NVAPI_OK; nvapiStatus == NVAPI_OK; i++) {
nvapiStatus = NvAPI_EnumNvidiaDisplayHandle(i, &hDisplay[i]);
if (nvapiStatus == NVAPI_OK) displayCount++;
}
printf("No of displays = %u\n",displayCount);

//Loop through each display to check if its grayscale compatible
for(unsigned int i=0; i<displayCount; i++) {
//Get the GPU that drives this display
NvPhysicalGpuHandle hGPU[NVAPI_MAX_PHYSICAL_GPUS] = {0};
NvU32 gpuCount = 0;
nvapiStatus =
NvAPI_GetPhysicalGPUsFromDisplay(hDisplay[i],hGPU,&gpuCount);
nvapiCheckError(nvapiStatus);

//Get the GPU's name as a string
NvAPI_ShortString gpuName;
NvAPI_GPU_GetFullName (hGPU[0], gpuName);
printf("Display %d, GPU %s",i,gpuName);
nvapiCheckError(nvapiStatus);

//Get the display ID for subsequent EDID call
NvU32 id;
nvapiStatus = NvAPI_GetAssociatedDisplayOutputId(hDisplay[i],&id);
nvapiCheckError(nvapiStatus);

//Get the EDID for this display
NV_EDID curDisplayEdid = {0};
curDisplayEdid.version = NV_EDID_VER;
nvapiStatus = NvAPI_GPU_GetEDID(hGPU[0],id,&curDisplayEdid);
nvapiCheckError(nvapiStatus);

//Check if the GPU & monitor both support grayscale
//and set the grayFlags table
if (isGrayscaleGPU(gpuName)&& \\

Multi-Display Configurations with Kepler

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | 23

 isGrayscaleMonitor(curDisplayEdid.EDID_Data,NV_EDID_DATA_SIZE))
 displayWinList[i].grayScale = true;
else
 displayWinList[i].grayScale = false;
}

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | 24

APPENDIX

MULTI-GPU COMPATIBILITY FOR PRE-KEPLER
CARDS
Grayscale capable Quadro boards can be mixed with other Quadro boards that can drive
one or many side displays as shown in Table 6. These “Side Display GPU’s” may not
yield the grayscale effect but the system will be compatible. Mixing of GPU’s is only
guaranteed to work if the GPU’s are of the same generation.

Appendix

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | 25

Table 6. Multi-GPU Compatibility

 Grayscale GPU

Quadro 2000D
Quadro 2000
Quadro FX
1800

Quadro 5000
Quadro 4000
Quadro FX 4800
Quadro FX 3800
Quadro FX 4600
Quadro FX 3700

Quadro 6000
Quadro FX 5800
Quadro FX 5600

Quadro Plex 7000
Quadro Plex D2

Si
de

 D
is

pl
ay

 Q
ua

dr
o

G
PU

Quadro 600
Quadro NVS 450
Quadro NVS 420
Quadro NVS 300
Quadro NVS 310

Quadro 2000D
Quadro 2000
Quadro FX 1800

Quadro 5000
Quadro 4000
Quadro FX 4800
Quadro FX 3800
Quadro FX 4600
Quadro FX 3700

 X

Quadro 6000
Quadro FX 5800
Quadro FX 5600

 X

Notes: These are theoretical compatibilities assuming the availability of 2 auxiliary power inputs. In
practice, the physical system attributes such as availability of PCI slots and their placements will
determine the final working set of cards from Table 6. The Quadro FX 5800 and Quadro FX 6000
require the full 2 auxiliary power inputs and therefore only used with lower-end Quadro cards that
do not have any auxiliary power requirements.
The mixing of older pre-G80 cards is not supported in grayscale configurations.

DIRECTED GPU RENDERING

In a multi-GPU setup, the default behavior is for OpenGL commands to be sent to all
GPUs. While this works for many applications, performance is gated by the capabilities
of the lowest-end card. In a typical grayscale setup, the side display with GUI elements
is normally connected to a lower-end Quadro while the grayscale panels are connected
to a higher-end Quadro card. It is desirable to limit grayscale rendering to the GPUs that
are driving the grayscale panels and not involve the side GPU at all in the render
process. Previous approaches required programmatically selecting the GPU using
OpenGL extensions which can quickly become an additional programming burden for a
radiology developer. The newer Quadro drivers have a feature called “Directed
Rendering” that allows the user to target the GPU for rendering and decouple it from

Appendix

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | 26

the display GPU. This is done via the NVIDIA Control Panel as shown in Figure 13 or
programmatically using NVAPI. When the render GPU and the display GPU are
different, the driver transparently uses a fast transfer path on Quadro cards to split the
rendered images onscreen. By default, the driver will pick the biggest GPU for render.

Figure 13. Setting Render GPU from NVIDIA Control Panel

Appendix

10 and 12-Bit Grayscale Technology TB-04631-001_v05 | 27

REFERENCES

[1] Digital Imaging and Communications in Medicine (DICOM)- Part 14 grayscale
standard display function. http://medical.nema.org

[2] NDS Dome E5 Display
http://www.ndssi.com/products/dome/ex-grayscale/e5.html

[3] Eizo Radiforce GS520 Display
http://www.radiforce.com/en/products/mono-gs520-dm.html

[4] Integer Texture Extension
http://www.opengl.org/registry/specs/EXT/texture_integer.txt

[5] WGL_ARB_pixelformat extension
http://www.opengl.org/registry/specs/ARB/wgl_pixel_format.txt

[6] NVIDIA NVAPI – www.nvapi.com

[7] Ian Williams, HD is now 8MP &HDR, Slides from NVISION 2008.
http://www.nvidia.com/content/nvision2008/tech_presentations/Professional_Visuali
zation/NVISION08-8MP_HDR.pdf

IMPLEMENTATION DETAILS

The accompanying source code is divided into 3 separate projects. The intent is for these
components to be mixed and matched according to the user application requirements.

 GrayscaleDemo.sln
● GrayscaleDemo.[cpp|h] – An example demo application that does the various

texture setups and allows the user to choose a grayscale image for display.
 CheckGrayscale.sln

● CDisplayWin.[cpp|h] – Class CDisplayWin that encapsulates all attributes of an
attached display such name, extents, driving GPU, etc.

● CheckGrayscale.cpp – Main program that enumerates all attached GPUs and
displays using Win GDI API and uses NVIDIA NVAPI to check the displays that
are grayscale compatible.

http://medical.nema.org/
http://www.ndssi.com/products/dome/ex-grayscale/e5.html
http://www.radiforce.com/en/products/mono-gs520-dm.html
http://www.opengl.org/registry/specs/EXT/texture_integer.txt
http://www.opengl.org/registry/specs/ARB/wgl_pixel_format.txt
http://www.nvapi.com/
http://www.nvidia.com/content/nvision2008/tech_presentations/Professional_Visualization/NVISION08-8MP_HDR.pdf
http://www.nvidia.com/content/nvision2008/tech_presentations/Professional_Visualization/NVISION08-8MP_HDR.pdf

www.nvidia.com

Notice
The information provided in this specification is believed to be accurate and reliable as of the date provided.
However, NVIDIA Corporation (“NVIDIA”) does not give any representations or warranties, expressed or
implied, as to the accuracy or completeness of such information. NVIDIA shall have no liability for the
consequences or use of such information or for any infringement of patents or other rights of third parties
that may result from its use. This publication supersedes and replaces all other specifications for the product
that may have been previously supplied.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and other
changes to this specification, at any time and/or to discontinue any product or service without notice.
Customer should obtain the latest relevant specification before placing orders and should verify that such
information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of
order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized
representatives of NVIDIA and customer. NVIDIA hereby expressly objects to applying any customer general
terms and conditions with regard to the purchase of the NVIDIA product referenced in this specification.

NVIDIA products are not designed, authorized or warranted to be suitable for use in medical, military,
aircraft, space or life support equipment, nor in applications where failure or malfunction of the NVIDIA
product can reasonably be expected to result in personal injury, death or property or environmental damage.
NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and
therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on these specifications will be suitable for
any specified use without further testing or modification. Testing of all parameters of each product is not
necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and fit
for the application planned by customer and to do the necessary testing for the application in order to avoid
a default of the application or the product. Weaknesses in customer’s product designs may affect the quality
and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements
beyond those contained in this specification. NVIDIA does not accept any liability related to any default,
damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any
manner that is contrary to this specification, or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA
intellectual property right under this specification. Information published by NVIDIA regarding third-party
products or services does not constitute a license from NVIDIA to use such products or services or a warranty
or endorsement thereof. Use of such information may require a license from a third party under the patents
or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other
intellectual property rights of NVIDIA. Reproduction of information in this specification is permissible only if
reproduction is approved by NVIDIA in writing, is reproduced without alteration, and is accompanied by all
associated conditions, limitations, and notices.

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever,
NVIDIA’s aggregate and cumulative liability towards customer for the products described herein shall be
limited in accordance with the NVIDIA terms and conditions of sale for the product.

VESA DisplayPort
DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and
DisplayPort Compliance Logo for Active Cables are trademarks owned by the Video Electronics Standards
Association in the United States and other countries.

Trademarks
NVIDIA, the NVIDIA logo, CUDA, Kepler, NVS, and Quadro are trademarks and/or registered trademarks of
NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of
the respective companies with which they are associated.

Copyright
© 2009, 2010, 2011, 2013 NVIDIA Corporation. All rights reserved.

	Introduction
	System Specification
	Supported Graphics Boards
	Supported Monitors
	Typical Multi-Display Configuration
	Case 1. Two 5 MP Grayscale Displays Driven by One Quadro Card
	Case 2. Four 5 MP Grayscale Displays Driven by Two Quadro Cards

	Supported Connectors
	Single or Dual-Link DVI
	DisplayPort and Adapters

	Grayscale Monitor Settings

	Grayscale Application Development
	DVI Driver Layer
	Older Method for DVI Application Level Pixel Packing
	OpenGL 10-Bit Pixel Format for DVI and DisplayPort on Windows 7
	Creating a 10 bpc OpenGL Window

	Multi-Display Configurations with Kepler
	Multiple Display Setup
	Mixing Grayscale and Color Displays

	Appendix
	Multi-GPU Compatibility for Pre-Kepler Cards
	Directed GPU Rendering
	References
	Implementation Details

